http://www.nytimes.com/2011/08/30/science/30plague.html?_r=1&nl=todaysheadlines&emc=tha210
Hunting for a Mass Killer in Medieval Graveyards
By NICHOLAS WADE
By autumn, the plague arrived. Within two years, a third or so of
The agent of the Black Death is assumed to be Yersinia pestis, the microbe that causes bubonic plague today. But the epidemiology was strikingly different from that of modern outbreaks. Modern plague is carried by fleas and spreads no faster than the rats that carry them can travel. The Black Death seems to have spread directly from one person to another.
Victims sometimes emitted a deathly stench, which is not true of plague victims today. And the Black Death felled at least 30 percent of those it inflicted, whereas a modern plague in
These differences, as well as the fear that the Black Death might re-emerge, have prompted several attempts to retrieve DNA from Black Death cemeteries. The latest of these attempts is reported Tuesday in of The Proceedings of the National Academy of Sciences by a team led by Hendrik N. Poinar of McMaster University in Ontario and Johannes Krause of the University of Tübingen in Germany.
They looked for surviving fragments of DNA in bones and teeth that archaeologists had excavated from the
Dr. Poinar's team also looked for the microbe's DNA in another medieval London cemetery, that of St. Nicholas Shambles, which was closed before the Black Death struck. They found no sign of it there, indicating that Yersinia pestis was not already present in the English population before the Black Death, so it must have arrived from elsewhere.
If Yersinia pestis was indeed the cause of the Black Death, why were the microbe's effects so different in medieval times? Its DNA sequence may hold the answer. Dr. Poinar's team has managed to reconstruct a part of the microbe's genetic endowment. Yersinia pestis has a single chromosome, containing the bulk of its genes, and three small circles of DNA known as plasmids.
The team has determined the full DNA sequence of the plasmid known as pPCP1 from the
"It was probably a naïve approach to assume we'd get the smoking gun on first attempt," Dr. Poinar said.
Mark Achtman, an expert on plague who works at University College Cork in Ireland, said that the new study was "technologically interesting" but that a great deal more of the microbe's DNA needed to be sequenced to obtain scientifically important results.
This is indeed Dr. Poinar's plan. The challenge in reconstructing the microbe's DNA from the
Determining the order of the chemical units in such fragments has become possible only in the last few years with the development of new DNA sequencing machines that work with short fragments.
Another technical challenge is to separate the plague DNA from that of the human and other microbial DNA in the ancient bones. One technique that Dr. Poinar's team has used is to tether plasmid DNA from the modern plague microbe to plastic beads. DNA is quick to bind to strands of DNA of the complementary sequence, as in the DNA double helix. So the beads act as fishing rods to pull out the DNA of interest.
"It's probably exceptionally important to find out what made this bug so deadly in the past," Dr. Poinar said.
© 2011 The New York Times Company
Donations can be sent to the
"The master class has always declared the wars; the subject class has always fought the battles. The master class has had all to gain and nothing to lose, while the subject class has had nothing to gain and everything to lose--especially their lives." Eugene Victor Debs
No comments:
Post a Comment